
JOURNAL OF APPROXIMATION THEORY 70, 348-357 (1992)

The Best Asymptotic Constant
of a Class of Approximation Operators*

XIAOJING XIANG

Department of Statistics, The University of Chicago,
Chicago, Illinois 60637, U.S.A.

Communicated by Zeev Ditzian

Received September 24, 1990; revised July I, 1991

The best asymptotic constant was established by Esseen for Bernstein operators.
In this paper, we extend Esseen's result to a class of linear positive operators and
as byproduct we obtain the best asymptotic constant for Szasz, Baskakov, Gamma,
and B-spline operators. © 1992 Academic Press, Inc.

1. INTRODUCTION

If j is a function defined on [0, 1], the Bernstein polynomial order n of
the function j(x) is defined by

(1.1 )

where

Let

IBn(f, x) - j(x)1
/l = sup sup max (f, -1/2) ,

n f 0,;; x,;; 1 OJ, n
(1.2)
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1.0898873 ....

where w(f, h) is the modulus of continuity of j on [0, 1J, and the second
supremum is taken over all j E C[O, 1]. Sikkema [7J has shown that

4306+837 J6
p, = 5832

p, is the best constant in the sense of being the smallest p,' for which

(1.3)

holds for every j E C[O, 1], and n = 1, 2, 3, .... Besides the best constant,
people are also interested in the best asymptotic constant. Let

Yn = sup max
f O';x.;l

IBn(f, x) - j(x)1
w(f,n- 112 )

(1.4 )

and Y= lim SUPn ~ 00 Yno Then Yis called the best asymptotic constant. From
the definition of Y, for every e> 0, there exists an integer no such that, if
n~no,

max IBn(f, x) - j(x)1 ~ (y + e) w(f, n- 1/2
)

O~x~l

for every j E C[O, 1], and for some j E C[O, 1] and n ~ no,

max IBn(f, x) - j(x)1 ~ (y - 8) w(f, n- 1/2
).

O:::::;x~l

Esseen [5] has shown that

(1.5)

(1.6)

00

y=2 I (i+ 1)(4)(2i+2)-4>(2i)) = 1.045564, (1.7)
;=0

where

1 IX4>(x) = -- e - /2/2 dt.
jhc -00

An alternative consideration is to find the best asymptotic constant for
each fixed x. Let {Ln } be a sequence of positive linear operators on
C[a,b]. With appropriate conditions on Tn,j(x) = Ln«u-xV, x),
j=O, 1,2, ..., Zhou [8,9] obtained the best asymptotic constant for each
fixed x with j(X)E WrHM, where WrHM= {f:j<r)ELiPM(a)}. Zhou's
results require that Tn,j(x) be finite, which may not be satisfied for some
positive linear operators. We are more interested in the asymptotic
constant with uniform properties as described by (1.5) and (1.6).
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In this note, we study the best asymptotic constant in Esseen's sense for
a class of operators which have the form

where Tn=(l/n)L7~1 Yi , Y1 ,···, Yn are iid (independent and identically
distributed) random variables on a probability space (D,~, PJ with
expectation Ex Y1 = X, x is a parameter taking values in an interval I,
Fn,At) is the distribution function of L:7= 1 Y i , and f(x) is continuous on
the real line R = (- 00, 00). Bernstein, Szasz, Baskakov, Gamma, and
Weierstrass operators are the special cases of this class of operators (see
Khan [6]). The main result are given in Section 2. We shall see that, under
mild conditions, the best asymptotic constant exists and is easy to
calculate. In Section 3, we find the best asymptotic constant for some well­
known operators. The main tools used in this paper are the Chebyshev
inequality, Lebesgue's dominated convergence theorem, and the central
limit theorem, which can be found in most text books in probability, such
as Billingley [1] or Chung [3].

2. MAIN RESULTS

Consider operators defined by (1.8).

THEOREM 1. .if

supn 1/2E x ITn-xl =0(1),
xel

then

00

Yn = sup L Px(n 1
/
2 ITn-xl;?: k) = 0(1).

xel k=O

Proof By a straightforward calculation, we have

CX)

L PAn 1/2 ITn-xl ;?:k)~ 1+n1/2Ex ITn-xl·
k=O

Hence, by (2.1),

00

sup L PAn 1
/
2 ITn -xl ;?:k)=O(l).

xelk~O

(2.1 )

(2.2)



Let
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Since

k=O,1,2, ....

we have

IExf(Tn) - f(x)1 ::;; Ex If(Tn) - f(x)1

::;; I f If(Tn) - f(x)1 dPx
k~O Ak

00

::;;w(f, n- l
/
2

) L PAn l
/
2 ITn -xl ~k), (2.3)

k=O

IExf(Tn)-f(x)1 ~P(1/2IT I k)
sup sup (f, -1/2) ::;; sup f..., x n n - X ~ .
XEI f W ,n xE/k~O

(2.4 )

For each fixed xoEI, consider the function gn.e(x) on [xo, co),

I
1

k+- (x-xo-kn- l
/
2)

t:
gn e(x) = X o+ kn- l

/
2::;; x::;; X o+ kn- 1/2+ t:

k + 1 X o+ kn -1/2 + t:::;; x::;; X o+ (k + l)n -1/2,

where k = 0,1,2, ... , 0 < t: < n- l /2. Also define fn.e(x) on (- 00,00),

For each n, fn,e(x) is continuous, symmetric about x = X o, and
w(fn,., n -1/2) = 1, fn,e(xo)= O. Since L;;"=°(k + 1) Pxo(A k ) < 00, Lebesgue's
dominated convergence theorem implies that

= lim I f fn,ATn) dPxo
e~ °k=O Ak

= I f (k + 1) dP Xo
k=O Ak

00

= L Pxo(nl/2ITn-xol ~k). (2.5)
k=O
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IExf(Tn)-f(x)[ ~P(I/2IT [k)
sup sup (f, -1/2) );SUp L. x n n- X );.
XEJ fill, n XEJ k~O

(2.6)

Combining (2.4) and (2.6), we have

[Exf(Tn) - f(x)1 ~ 1/2 k)
sup sup (f, ~ 1/2) = sup L. PAn [Tn - xl); .
XEJ fill, n XEJ k~O

(2.7)

To complete the proof, one needs to show that SUPXEJ and sUPf are inter­
changeable on the left hand side of (2.7). First, by (2.3),

IExf(Tn)-f(x)[ ~P(I/2[T I k)
sup (f, -1/2) ~ sup L. x n n - x); .
XEJ ill ,n XEJk~O

Thus, by (2.7),

IEJ(Tn) - f(x)1 IExf(Tn) - f(x)[ (2.8)
sup sup (f, -1/2) ~ sup sup (f, -1/2)

f XEJ ill, n XEJ fill, n

On the other hand, for each fixed xE I, there exists a sequence Um},

[KJ(Tn)- f(x)l_ l' IEdm(Tn)- fm(x)1 (2.9)
sup (f, -1/2) - 1m (f, -1/2) ,
fill, n m~oo ill m' n

and for m = 1, 2, 3, ...,

Hence, by (2.9) and (2.10),

IExf(Tn) - f(x)1 IExf(Tn) - f(x)1 (2.11)
sup sup (f, -1/2) ~ sup sup (f, -1/2)
XEJ fill, n f XEJ ill, n

When (2.8) and (2.11) are combined, the proof is complete.

Remark. In Theorem 1, we do not require that the operators have the
form (1.8). In some special cases, we can find 'Yn for each n by using
Theorem 1.
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EXAMPLE. Let Y l , ... , Yn be iid random variables with density function
get, x) = (1/~) e-(t-x)2/2. Then Tn has density function gn(t, x) =
(n/2n )1/2 e -n(t - x)2/2 . The Weierstrass operator is

where x E I, Ex If(Tn)1 < 00. Since

the condition of Theorem 1 holds. Since n l/2( Tn - x) = Z has a standard
normal distribution, by Theorem 1,

00

Yn=SUP L: Px(n1/2ITn-xl~k)
XEI k~O

00 00

= L: P(IZI ~k)=2 L: (I-CP(k))= 1.365574.
k~O k~O

The main result of this section is stated as follows.

THEOREM 2. Suppose that vex) = EAYl - xf is continuous and has
finitely many zeros on a finite interval I. Assume furthermore that
w(x) = Ex IYl - xl 3 is bounded on I. Then

y=limsupYn=2 I. (I-CP( ~)),
n~oo k~O \yM

where M = maxxE1v(x).

Proof Since

n1/2E x ITn-xl ~ [nEx(Tn-x?J l/2= V(X)l/2,

the condition of Theorem 1 holds. Thus,

00

Yn=sup L: PAn l/2 ITn-xl ~k).
XElk~O

To prove (2.12), it suffices to show that

(2.12 )

(2.13)

lim sup sup I. PAn1/2ITn-xl~k)=2 I. (l-CP( ~).). (2.14)
n~ 00 XEI k~O k~O Y M
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Let h'nJ be a subsequence of h'n}, i'=limm~cXJ Ynm' there exists xmE/,

I 00 .

Ynm - m < L P<Jn~2ITnm -xml ~k)~Ynm' (2.15)
k~O

Since 1 is compact, there exist X oE I and a subsequence {xm ,} of {xm },

v(xm) =f 0, lim; • ce x m,= X o, such that

We first show that v(xo) =f 0. From the conditions of Theorem 2, there
exists x E I, v(x) = max x~ I v(x) > 0. By Lebesgue's dominated convergence
theorem and the central limit theorem,

oco

lim L P..{n 1
/
2 ITn -xl ~k)= 1 +J(x),

n -+ 00 k = 0

where

J(x)= I.· P(IZI~ ~)=2 i (1-<P( ~))>o.
k=O yiV(X) k=O -y'V(X)

Hence

y=lim sUPYn~ 1+J(x» 1.

If v(xo) = 0, by the Chebyshev inequality,

(2.17)

(2.18 )

x. oco 1
L Pxm,(n;'i2ITnm;-xm,1 ~k)~ I +v(xm) L k 2' (2.19)
k~O k~O

implying that

ex;

lim I Px m,(n;',2 ITnm; - X m,I~ k) ~ 1.
1-+-:0 k...:..: 0

(2.20)

Thus y ~ 1 by (2.16), which is in contradiction with (2.18).
Let Xl' ..., Xs be the zeros of v( X) on I. From the above proof, there is a

b > 0 such that

Xm;¢A,=/n(U (X;-b,X;+b»).
1= 1
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Since A = I-As is compact, we have b = minxEA V(X)1/2 > O. By the
Berry-Esseen theorem [2],

Thus

for k = 1, 2, ..., implying, by Lebesgue's dominated convergence theorem,

lim I PXm(n:';; ITnm-xmil ~k)= I P(IZI ~ ~).
l~ 00 k~O' , k~O 'V v(xo)

Therefore, by (2.16),

Finally, in order to show that v(xo) = M = maxXE1 v(x), let x E I, M =
Since

00

Yn~ L PAn 1
/
2 ITn-xl ~k),

k=O

Y~ I P(IZI ~ ~).
k~O Y v(x)

Thus

I P(IZI~ ~)~ I P(IZI~k),
k~O y v(x) k~O v(xo)

which implies that v(xo)~ v(x) = M. The proof is complete.

3. EXAMPLES

(1) BERNSTEIN OPERATOR. Let PAY1 = 1) = 1 - PAY1 = 0) = x,
X E [0, 1]. Then (1.8) defines the Bernstein polynomials given by (1.1).
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With a simple calculation, v(x)=x(l-x), maxxE1v(x)=!. and w(x) is
bounded on [0, 1]. By Theorem 2,

co

y = 2 L (1- ct>(2k)) = 1.045564.
k=O

This is the result of Esseen [5].

(3.1 )

(3.2)

(2) SZAS OPERATOR. If PAYI =k)=xk e-x/kl, k=O, 1,2, ..., XE [0, a],°< a < 00, then (1.8) defines the Szasz operator

-nx co (k) (nx)k
Sn(f,x)=e L f - -kl '

k~O n .

and vex) = x, maxxE1 vex) = a. Following Theorem 2,

(3.3 )

(3) GAMMA OPERATOR. Let the density function of Y I be get, x) =
X-I e- tlx, t > 0, 0< a:( x:( b < 00. Then (1.8) reduces to the Gamma
operator

g(t,X)=g

x-
n

fco (t)GAI, x) = f - tn- I e - tlx dt.
(n -I)! 0 n

Since v(x) = x 2
, we get M = b2

• By Theorem 2,

(4) B-SPLINE OPERATOR. Let YI have density function

tE[x-!,x+D

otherwise.

Then (1.8) defines the B-spline operator

f
X+ 1/2

Ln(f, x) = n f(t) Bn(t, x) dt,
x-1/2

(3.4)

(3.5)

(3.6)

where -oo<a:(x:(b<oo, Bn(t,x) is the B-spline with knots x-l/2,
x + l/n - 1/2, ..., x + 1/2 (see Dahmen and Micchelli [4]). Since v(x) =
1/12, Theorem 2 gives

y = 2 f (1- ct>(2 j3k)) = 1.000532.
k~O

(3.7)
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(5) BASKAKOV OPERATOR. Let PAYI = k) = pqk, k = 0, 1,2, ... (0 ~
p~l, p+q=l). Put p=(l+X)~I, then (1.8) defines the Baskakov
operator

B::U; x) = (1 + x)-n k~O f(~)(n+ ~ -1 )C :xY·

If x E [0, a], by v(x) = x(1 + x), M = a(l + a). By Theorem 2,

00 ( ( k ))y=2 L 1-cP .
k~O Ja(l + a)
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